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Abstract—An exact numerical solution to the 2-D(Two-Dimensional) laminar boundary-laver equations

ot power-law non-newtonian fluids is obtained using a finite difference technique. No limitation has been im-
pused on the flow behavior index(n) or generalized Prandti number. As a test case, velocity and temperature
fields around a circular cylinder in crossflow were calculated. The result clearly indicated that heat transfer of
power-law materials is governed by shear dependent viscosity.

INTRODUCTION

Recently, non-Newlonian fluids such as molten
plastics, slurries, polymeric solutions etc. have widely
been encountered in many chemical industries. The
basic transport behavior of these fluids has therefore
been a popular topic for both theoretical and experi-
mental investigators. These non-Newtonian fluids are
in essence viscoelastic when in motion, and generally
a comprehensive constitutive equation should be
sought 1o relate the local stress to the hydrodynan:ic
variables of the system. However, for certain class of
non-Newtonian fluids such as CMC (Carboxyl Methyl
Cellulose) solution and paste, a purely viscous model
car. describe the rheological behavior very closely. A
two-parameter model, i.e., power-law model will be
considered 1n this paper.

The internal flow problems of various non-Newto-
nian fluids have in the past been primarily studied due
to the relative importance and simplicity of the flows
in ducts and channels. The external flow problems of
non-Newtonian fluids are also of much interest m the
design of a number of industrial applications including
the designs of heat exchanger and manv separation
process units. Laminar boundary-layer flows of nci-
Newtonian fluids are presently amenable to theoretical
analysis under conditions where the fluid behaviors
follow the power-law model.

As far as the boundary-layer flows are considered,
the well-known laminar boundary-layer equations
were firs! extended to include power-low fluids by
Acrivos and his coworks in early 1960's [1-3]. A
generalized Reynolds number and a generalized
Prandt] number were properly recognized and discuss-
ed. The boundary-layer equations are nonlinear and

thermal energy equation is coupled with the velocity.
Methods of solution to the momentum equation in-
cluded Karman-Pohlhausen integral method [1,4],
asymptotic expansion [2], Blausius series expansion
[5] etc. and these are reviewed in ref. (5). The solution
to the thermal energy equation included an asymplotic
expansion for large Prandtl number {3], and a series
expansion [5]. However, the above solutions were
either limited to analytical approximations or valid for
a narrow range of power-law materials, and sometimes
the predicted heat transfer rates were opposite even in
tendency. Certainly, the solutions to the power-law
boundary-layer equations are liniited, and a very limit-
ed number of heat transfer experiments also pose a
difficulty for comparison [3,6].

The purpose of Lhis paper is therefore to provide an
exact numerical solution to the 2-D laminar boundary-
layer equations of power-law non-Newtonian fluids. As
a test case, heat transfer from a circular cylinder in
crossflow has been chosen. The attached flow velocity
and temperature (or concentration) profiles were cal-
culated for a wide range of flow behavior index (n) and
generalized Prandl number. A Gdetler-type variable
was introduced and a finite difference scheme was ini-
plemented on computer in this variable domain. The
method of finite difference today may be a simple ex-
ercise. However, o the knowledge of present author
no onte has attempted to solve the problem by this
method, and it should be more reliable than any other
analytical approximations.

MATHEMATICAL MODELING

Two-dimensional laminar boundary-layer equa-
tions of power-law fluids are formulated in this section.
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Fig. 1. Boundary-layer coordinate.

The Newtonian counterparts of the governing equa-
tions are easily obtained by simply letting the flow
behavior index (n) equal to one in the generalized
equations. A forced convection with no viscous dis-
sipation has been assumed. The mass transfer prob-
lem s limited to convective transport of a non-reac-
ting binary system of dilute solution.
1. Dimensional form of the governing equa-
tions

The dimensional form of the governing equations

(see coordinate systemn in Fig. 1) read
ou , ov.

ax oy =0 (1)

ox Yoy~ pax o lox "oy @
v av 1 9p , 1 Otxy | OTyy
oV G2 _ 2 gF
ugx TVay 2 oy ( ox 5y ) (3)
oT __aT_ 8T  &'T
o ay e (ax’ + ay’ ) @
aC  _aC_n2'C 2 C
u ax +v oy =D ( o + y? ) (5)
The boundary conditions imposed are
uix, 0)=vix 0=0 (6)
u(x, o) =U,{x) (7)
Tx,0=T, (8)
Tx,o)=T, (9)
Cix,00=C, (10
Clx,o)=C, (1

In the above equations, subscripts w and e denote the
applied conditions at the wall and at the edge of
boundary layer, respectively.
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For Newtonian fluids it is postulated that the siress
tensor is directly proportional to the deformation ten-
sor, and viscosity is a pure physical property. For pow-
er-law fluids, however, the viscosity is a function of
the second invariant of the deformation tensor leading
to a constitutive equation of the form

=n7, (12
where
p=m|y|"*" 13

in which m (NS"/m? is a constant and the magnitude
of deformation tensor is easily approximated as

o

2. Boundary-layer approximation

The above two equations (egs. 2 and 3) are highly
nonlinear. Useful solutions can be obtained by simpli-
fying these equations via boundary-layer approxima-
tion. The standard procedure to this approximation is
first to rewrite the governing equations in a stretched
coordinate system by letting

x=Lx* {15
y=Ly*/ R.,,) & 19
u=Uu* an
v=U,w*/ R, 18
p=pUJp* (19
U=U,Ux 20
T*=(Tw-T)/(Tw—T.) 1)
C*=(Cpy—C)/Cu-C.) 22)

In the above, R, , = U,>"L" #/m is the generalized Rey-
nolds number [6]. The governing equations in terms
of dimensionless variables read

ou*  ov*

ot a;’* =0 3
ou* au* U™ a ,ou*

* *C_ 17 * n

ut o +v ay* Ue ax* 8y*<ay* 24

ap*

=0 25)

oy*

LOT*  LoT*_ 1 2'T*

u aX* +v ay* Pnp ay*2 (26)

* Nk 2%k
u*ac L9C* 1 2°C 27

ax* v ay* = g; ov*

In the above egs. P, , and 3, are respectively general-
ized Prandtl number and generalized Schmidt number
defined by



Boundary-Layer Analysis of Power-Law Fluids 229

P, CopllUo —p, Rl 08
k Re.p" Re‘pn+]

S.,=Ue_g _Re 29
Re.pﬁ Re-pm

where R,, P, and S, are Reynolds, Prandtl, and Sch-
midt numbers, respectively. On going from eqs. (1)-{5)
to (23H27), boundary-layer approximatioln has been
introduced, i.e., terms divided by (R,,)7+T has been
dropped. The second momentum eq. (eq.25) simply
dictates that there is no significant pressure variation
across the boundary layer even for power-law fluids.
This presumes high Reynolds number but should be
valid for all kinds of fluids that may be approximated
by power-law constitutive equation.

Boundary conditions corresponding to eqs.(23)}(27)
are

u* (x*0)=v*x*0)=0 (30
( ) Uz @1
(x* 0) (39)
( =1 39
*(x 34)
<x*. o) =1 (39

3. Slmllanty-type transformation

Boundary-layer calculation has conventionally
been performed in similarity-type variable domain.
The one introduced here is Goetler-type variables
which have been proved very useful for a laminar
boundary-layer calculation (7-10].

e[ U *dx* 89
=Ury*/2¢& @37

A normalized streamwise velocity and a modified nor-
mal velocity are now introduced according to

F=u*/U¥* 38)
an F V2§

V= L Dk i

/ 2é:ax" u¥ U;“V 9

In terms of new independent variables and depen-
dent variables defined above, the boundary-layer
equations read

ug-—+F+ av =0 40
5! F
205, F; +a, al; +azF+aa+a‘g—5 =0 41
2 *
T 1y, —+b THib b2 =0 @)
oan a¢

CA% +c 1_8£‘ +c,C*¥+c, e~ Ci% =0, 43

an’ 9§
where the variable coefficients are

a,=n 44)
a=-V @5
a=—6F. 4= & OF 49
=g @
a,=—-2£F (48
b,=a,P,, 49
b,=b;=0 (60
b,=a,P,, 61)
C1=aSc, 52
C,=C3=0 (63
c¢,.=a,S., (54

The above governing equations have been numeri-
cally integrated using a finite difference method. An
equal spacing, i.e., A¢=0.005 or 0.01 has been pro-
vided in streamwise direction. However, a variable
grid spacing has been used for 5 derivatives. The one
adopted here is based on the geometric progression;

An,= x)'TAn, 1=1,2, 55

In the above, A7, is the spacing between the second
grid point and the wall. This particular approach has
been found to be satisfactory by a number of investiga-
tors [11]. The total thickness of the 7-strip is given by
1 —

1 p—
where m denotes the total number of grid points
across the 7-strip. For given 7., x and i the spacing of
the grid points is then well defined. For each particular
problem the optimum values of Ap;, x and i are se-
lected. For the present problem, A7, =0.004, x = 1.08
and m = 81 were found to be practical.

The numerical integration proceeded in an implicit
manner in the direction of increasing §. At each stage
of &, egs. (40) and (41) were first solved for V and F fol-
lowing Carnahan et al. [12], and the results were fed to
eq. (42) to obtain temperature profile. The computa-
tion time for power-law boundary-layer code exceeded
by 20-30% compared to that of Newtonian due to the
nonlinearity in constitutive equation.

Boundary-layer flow is driven by the outer flow, an
important flow characteristic such as turbulence level
and blockage effect. The outer flow equation for a 2-D
symmetric body should include a leading linear term
to guarantee a stagnation point, and terms of odd order

=4mn ( )76#:1 (56)
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Fig. 2. Boundary-layer velocity distributions of power-
law materials at §= 20 degrees.

only to ensure the symmetry of the flow. Though clas-
sical, a most reliable outer flow equation is Hiemenz
outer flow distribution. This is a polynorminal fitted to
the experimental data [2] given by the formula

Ur=1814x*10.271x* +0.047x* 57

RESULTS AND DISCUSSION

Present numerical solution for the boundary-layer
flows of power-law fluid may be considered exacl.
There was no limitations on the generalized Prandt!
number and flow behavior index. Therefore, any
anomalous transport behavior of different power-law
fluids are entirely due to the different characteristics of
the non-Newtonian materials. There was no additional
difficulty in running the power-law program over Lhe
Newtonian case.

The boundary-layer velocity profiles at #= 20° and
60° are shown in Figs. 2 and 3. The viscous velocity of
pseudoplastic materials is larger near the wall and
smaller near the freestream compared to Newtonian
fluid. It is also clear that as the fluid is more shear thin-
ning (smaller n) the above tendency is exaggerated.
Exactly the opposite is true for the dilatant material,
i.e., the velocity profile for dilatant material is smaller
near the wall and larger near the edge compared to
Newtonian fluid. The same tendency was also report-
ed for flows over flat plate [1]. This anomaly may
easily be understood when the shear rate distribution
across the boundary-layer is considered. In boundary-
layer flow, shear rate is maximum near the wall and
minimum near the edge where it tends to zero. There-
fore, as the material becomes more shear thinning, a
smaller viscosity and larger velocity is dictated near the
wall, and a larger viscosity and smaller velocity is ob-
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Fig. 3. Boundary-layer velocity distributions of power-
law materials at = 60 degrees.
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Fig. 4. Skin friction of power-law materials predicted
with Himenz’ outer flow equation.

tained near the edge. Exactly the opposite can be ap-
plied for dilatant materials.

The skin friction around a circular cylinder in
crossflow is maximum at about §= 50-60° depending
on flow conditions, and tends to vanish as the point of
separation nears for Newtonian fluid [13,14]. The
point of separation is actually oscillating due to the
natural shedding. Following Dwyer and McCroskey'?,
the tinie-averaged point of separation from surface oil
flow experiment is 78 + 1° for laminar flows. In numer-
ical calculation, the predicted point of separation is
very sensitive to the outer flow equation. The point of
separation calculated from the present boundary-layer
code using Hiemenz outer flow equation was approx-
imately 79.5°.

Presently calculated skin friction for power-law
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Fig. 5. Boundary-layer temperature distributions of
power-law materials at 4= 20 degrees.

fluids is given in Fig. 4. Up to approximately §=30°
from the front stagnation point, the skin friction in-
creases as the value of n decreases. Beyond this, the
tendency is reversed, and a second cross is noticed at
around # = 65°. As far as the boundary-layer flow is
established, wall properties should follow Newtonian
in nature. For Newtonian, skin friction i.e., wall shear
rate increases up to about #=50-60°, as mentioned
above and as shown in the figure. Therefore, up to ap-
proximately this point, the powerlaw viscosity de-
creases for n<1, and increases for n>1, and the ten-
dency in Fig. 4 is expected.

Temperature distribution and therefore heat trans-
fer is not directly related to the non-Newtonian viscos-
ity, but uniguely determined by the velocity distri-
bution as far as the fluid is purely viscous and under
forced convection. The connection between tempera-
ture distribution and non-Newtonian viscosity comes
into play only through the velocity field.

With P, =14, boundary-layer temperature distri-
butions at 8= 20°, and 60° are shown in Figs. 5 and 6,
respectively. The growth of thermal boundary-layer
along downstream, and its much thinner thickness
compared to that of velocity boundary-layer are ob-
vious. More importantly, temperature profile becomes
larger as the value of n decreases and this is rot revers-
ed, unlike the velocity profile, as one moves away
from the surface. This however may be easily under-
stood by taking a further look at the corresponding
velocity profiles (Figs. 2 and 3). Near the wall, the vis-
cous velocity becomes larger as the value of n decrea-
ses, and the thermal boundary-layer is mostly con-
fined to this region of velocity field. With a larger
velocity profile, a larger temperature profile resuits
under fored convection.
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Fig. 6. Boundary-layer temperature distributions of
power-law materials at 7= 60 degrees.
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Fig. 7. Local rate of heat transfer for pseudoplastic
materials.

Shown in Fig. 7 is the presently calculated heat
transfer for n=0.8 and P, ;= 10. Also shown in the
same figure are analytical approximation by other in-
vestigators. The predicted heat transfer shows a
considerable devialion between them. Aside from the
present numerical solution for n = 0.8, pedictions by
two others show a contradiction even in tendency.
Present resull using the outer flow equation by Shah et
al. is similar to that of Shahet al. (3], however with a
lower value of predicted heat transfer for the present
case. This perhaps is from the lower value of P, , = 10

Korean J. Ch. E. (Vol. 6, No. 3)
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Fig. 8. Heat transfer of power-law materials predicted
with Hiemenz' outer flow equation.

employed presently, compared to oo by Shah et al..
With a very large value of P, »» the thermal boundary-
layer is very thin, the velocity profile covering the
thermal boundary-layer is presumably linear. Follow-
ing Shahet al., their prediction was in good agreement
with the experimental data.

Two crossover points between n=0.8 and n = 1.0
are also noted from Fig. 7. This probably is due to the
skin friction distribution given in Fig. 4. The skin fric-
tion, i.e., the wall shear rate is maximurn at about 8 =
50-60°, and becomes zero at the front stagnation point
and at the point of separation as well. For n< 1, higher
rate of shear gives a lower viscosity and larger velocity
and temperature leading 1o a increased heat transfer.
At zero or low rate of shear, i.e., near the two character-
istic points, the viscosity for n=0.8 would be larger
than that of Newtonian and this gives smaller velocity
and ternperature leading to a decreased heat transfer
for pseudoplastic materials. Therefore two crossover
points in Fig. 7 are expected.

Presently calculated heat transfer for a wide range
of flow behavior index with P, , = 14 is given in Fig. 8.
For the major portion of the attached flow, the rate of
heat transfer increases as the value of n decreases.
Heat transfer of pseudoplastic is higher than that of
Newtonian which, on the other hand, is higher com-
pared to that of dilatant. However, as one nears front
stagnation point or point of separation, the tendency is
reversed. Identically the same tendency was true for
skin friction. This is not unexpected at all. Under forced
convection heat transfer is essentially governed by
velocity field, and this viscous velocity is again deter-
mined from the shear dependent viscosity for power-
law materials. With a larger streamwise velocity near
the wall for a more shear-thinning material, a higher
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velocity and temperature gradients are dictated result-
ing in a larger skin friction and heat transfer at wall.

CONCLUSION

Boundary-layer analysis of momentum, heat and
mass transfer for power-law non-Newtonian fluids has
been performed using a finite difference technique.
Results obtained indicated that the heat transfer across
the boundary-layer as well as the skin friction distribu-
tion is entirely governed by the flow behavior index(n)
of power-law fluids via the boundary-layer velocity dis-
tribution.

NOMENCLATUE

concentration, kg mol/m?
specific heat at constant pressure, J/kg°K
binary diffusivity, m?/sec
consistency index, kg™/m
radius of cylinder, m
flow behavior index
pressure, N/m?
temperature, °K
streamwise velocity, m/s
normal velocity, m/s

. streamwise coordinate, m
normal coordinate, m

A~

<X <c dU D CEOOO

Subscripts

e . condition at boundary-layer edge
o : condition in freestream
w 1 condition on the wall

Superscript
* : dimensionless variables in egs. 15-22

Dimensionless Groups

N, : local Nusselt number = hL/k (h = heat trans-
fer coefficient, L = diameter of cylinder, k =
thermal conductivity)

P, : Prandt number = C u/k

P, : generalized Prandtl number defined by eq.
(28)

R, : Reynolds number=DU,/v

R., : 8eneralized Reynolds number

S. : Schmidt number=v/D

S, @ generalized Schmidt number defined by eq.
(29)
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Greek Letters

DN T R R

: then al diffusivity

: normal coordinate defined by eq. (37)

. viscosity

: kinematic viscosity

. streamwise coordinate defined by eq. (36)
: density

: shear stress, N/m?

. circumferential angle, deg
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