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Abstract--An exact numerical s, ,lutio:+ to lt?e E-D(Tw~+,-Dimensional) laminar boundary-lay+.,r equati~ms 
ol power-law non-newtonian fluids is cJbtained using a finite difference technique. No linlitatior~ ha; been im- 
posed on the flow behavior index(n) ur generalized Prandti mJnlber As a test case, vel,.,city and temperature 
fields around a circular cylinder m crussflow were cak:uiated The resu!l clearly mdicaled thai heat transfe~ of 
power-law materials is go,,erned by :,hear dependent vise t~blly. 

INTRODUCTION 

Recently, non-Newtonian fluids such as mr 
plastics, slurries, polymeric solutions etc. have widely 
been encountered in many chemical industries. The 
basic transport behavior of these fluids has then.~fure 
been a popular topic for both theoretical and experi- 
mental investigators. These non-Newtonian fluids are 
in essence viscoelastic when in motion, and gel~erally 
a comprehensive constitutive equation should be 
sought to relate the local stress to the hydrodynau;:ic 
variables of the system. However, fur certain class of 
non-Newtonian fluids such as CMC (Carboxyl Methyl 
Cellulose) solution and paste, a purely viscous model 
ca~ describe the rheologica] behavior very closely. A 
two-parameter model, i.e., power-law mc)del ,.*,ill be 
considered in this paper. 

The internal flow problems of various non-Newtu- 
nian fluids have in the past been primarily studied due 
to the relative importance and simplicity of tile flr 
in ducts and channels. The external flow problems ~>f 
non-Newtonian fluids are also of much inlerest u~ Ine 
design of a number  of industrial applicaD~ns includi ~g 
the designs of heat exchanger and many separation 
process units. Laminar boundaD'-layer fows of nc, n- 
Newtonian fluids are presently amenable  !o theoretical 
analysis under conditions where the fluid behaviors 

follow the power-law model. 
As far as the boundary-layer flows are considers'd, 

the, well-known laminar boundary-layer equati~ns 
were first extended to include power-low fluids by 
Aerivos and his coworks in early 19(,i)'s [1-3]. A 
generalized Reynolds number  and a generalized 
Prandtl number  were properly recognized and discuss- 
e d  The boundao'-Iayer equations are n:>nlmear and 

thernlal energy equation is coupled with the ~,elocity. 
Methods of solution to the n lomentmn equa:ion in- 
cluded Karman-Pohlhausen integral method [1,4], 
asymptotic expansion {2], Blausius series expansion 
i5] etc. and these are reviewed in ref. (5). The solution 
to the thermal energy equation included an asymptotic 
expa~Ision for large Prandtl number  [3], and a series 
expansion [5]. However, the above solulions were 
eithel limited to analytical approximations or valid for 
a narrow range of power-law materials, and son/etin]es 
the predicted heat transfer rates were opposite even m 
tendency. Certainly, the solutions to the power-law 
boundaD'-Iayer equations are limited, and a veD' limit- 
ed number  of ]neat transfer experiments also pose a 
difficulty for comparison [3,6]. 

The purpose of Ibis paper is therefore to provide an 
exact numerical solution to the 2-D laminar boundaD'- 
layer equations of power-law non-Newtonian fluids. As 
a test ca.se, heat transfer from a circular cylinder in 
crossflow has been chosen. The attached flow velocity 
and temperature (or concentration) profiles were cal- 
culaled for a wide range of flow behavior index (n) and 
generalized Prandtl number. A G6etler-type variable 
was introduced and a finite difference scheme was im- 
plemented on computer in this variable domain. The 
method uf finite difference today may be a simple ex- 
ercise. Howevei~, Io the knowledge of present author 
no one has attempted to solve the problem by this 
method, and it should be more reliable than any other 

analytical approxtmations. 

MATHEMATICAL MODELING 

Two-dimensional laminar bounda~'-layer equa- 
tions of power-law fluids are fornmlated in this section. 
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Fig. I. Boundary-layer coordinate. 

The Newtonian counterparts of the governing equa- 
tions are easily obtained by simply letting the flow 
behavior index (n) equal to one in the generalized 
equations. A forced convection with no viscous dis- 
sipation has been assumed. The mass transfer p rod  
fern is limited to convective transport of a non-reac- 
ting binary system of dilute solution. 
I. D i m e n s i o n a l  form of the  g o v e r n i n g  equa- 
t ions  

The dimensional form of the governing equations 
(see coordinate system in Fig. 1) read 

3u , ~v g~.~-y = o (1) 

3 u + .  • i 3p+ I ( O r ~ ,  O r ~ ,  
~-7 ~ay p ax p " - 5 7 " ~ y )  (m 

(3r~YOx §  
Ov ~ Ov 1 • < 1  

U~x • p Oy 

OT + a T  O'T O'T 
U ~ x  V~y--- -a  (~Tx2 +~Ty2 ) (4) 

aC, • (WC, a'C 
u a T •  a~ -=D ax' ~-~y~- (5) 

The boundary conditions imposed are 

u (x, 0) = v  (x, O) = 0  (6) 

u (x, co )=Ue  (x) (7) 

T (x, 0)=T, , ,  (8) 

T (x, o o ) = T e  (9) 

C (x, 0) =C,,, (10) 

C (x, oo)=C~ (11) 

In the above equations, subscripts w and e denote the 
applied conditions at the wall and at the edge of 
boundary layer, respectively. 
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For Newtonian fluids it is postulated that the stress 
tensor is directly proportional to the deformation tern 
sor, and viscosity is a pure physical property. For pow- 
er-law fluids, however, the viscosity is a function of 
the second invariant of the deformation tensor leading 
to a constitutive equation of the form 

~=~2, (12) 

where 

, = m  li'l "-~ (13) 

in which m (NSn/m 2) is a constant and the magnitude 
of deformation tensor is easily approximated as 

3u 
] i [ = l ~ y [  (14) 

2. Boundary . layer  approx imat ion  
The above two equations (eqs, 2 and 3) are highly 

nonlinear. Useful solutions can be obtained by simtpli- 
lying these equations via boundary-layer approxima- 
tion. The standard procedure to this approximation is 
first to rewrite the governing equations in a stretched 
coordinate system by letting 

x = L x *  (15) 
l 

y - L y * / ( R e ,  p) ~,7/ (16) 

u=Uou* (17) 
1 

v = Uov*/(R e,,,) ~ (18) 

p=pUo~p * (19) 

U e= U oU* (20) 

T * =  (T , , -  T) / (T,,,- T~) (21) 

C* = (C ,,,- C) / (C ~,- C e) (22) 

In the above, Rep = Uo2nL n ,~ is the generalized Rey- 
nolds number [6]. The governing equations in terms 
of dimensionless variables read 

Ou* . ~v* . 

Ox* + ~ =(9 (23) 

. 0 u *  . , 0 u *  ,~ , 3 U e *  a 3u*,.~ 
u'xT,., - -v  ---~ =u~ ~ + (24) ex oy ax* ay*  ( gjy* ) 

op* = 0 (25) 
0y* 

, aT*+v.KK* 1 O'T* 
u 3x* &~* -- P,-,o -8y*' (26) 

, 8 C *  , , 8 C *  1 O'C* 
u bTrx* . v  b - y ; -  sc,o ~y*' (27) 

In the above eqs. P,,p and Sap are respectively general- 
ized Prandtl number and generalized Schmidt number 
defined by 
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p,., C,,pLUo =p, .  R~__, (28;,, 

k R~,. ~+~ R~,~ "+~ 

Sr L U ~ = s r  R,__, (29) 

R~,~"*' R~,~ "+' 

where R e, P,, and S c are Reynolds, Prandtl, and Sch- 
midt numbers, respectively. On going from eqs. (1)-(5) 
to (23)-(27), boundary-layer approximation has been 
introduced, i.e., terms divided by (R~,p)-~+r has been 
dropped. The second momentum eq. (eq.25) simply 
dictates that there is no significant pressure variation 
across the boundary layer even for power-law fluids. 
This presumes high Reynolds number but should be 
valid for all kinds of fluids that may be approximated 
by power-law constitutive equation. 

Boundary conditions corresponding to eqs.(23)-(27) 
are 

u* (x*, 0) =v* (x*, 0) =0  (30) 

u* (x*, c o ) = U *  (31) 

T* (x*, 0) =0 (32) 

T* (x*, co)=1 (33) 

C* (x*, O) =0 (34) 

C* (x*, oo)=1 (35) 

3. S i m i l a r i t y - t y p e  t r a n s f o r m a t i o n  
Boundary-layer calculation has conventionally 

been performed in similarity-type variable domain. 
The one introduced here is GOetler-type variables 
which have been proved very useful for a laminar 
boundary-layer calculation [7-10]. 

= f f * U  *dx* (36) 

~I=U~*y*AF~ (3'7) 

Anormalized streamwise velocity and a modified nor- 
mal velocity are now introduced according to 

F=u*AJ~* (38) 

F ~_ 2 ~ v ,  \7=2# O~** U* ~ (3!)) 

In terms of new independent variables and depen- 
dent variables defined above, the boundary-layer 
equations read 

, OF 8V 
2,f~-~- + F +  ~ -  =0 (40) 

8 'F  OF OF 
a,-~-~ +a,  ~ -  §  a, +a .  ~ -  = 0 {41) 

.~T* ~T* 
a~T* + b l ~ _  + b , T , + b , + b ,  ~__  =0 (42) 

cqrp 

Dry= --c.-D-~-ff-c.C. - - c . - l - c . ~ - = 0 .  (43) 

where the variable coefficients a r e  

ao = n  (44) 

a~= - V (45) 

22 au* 
a ' =  - f l F '  fl=: U** De (46) 

a,=.8 (47) 

a, = - 2 ~F (48) 

b~= a~P,.,~, (49) 

b, =b ,  =0 (50) 

b ,=  a4P,.,,, (51) 

c,=a,S~,.  (52) 

c~=c,=0 (53) 

c,=a,Sr (54) 

The above governing equations have been numeri- 
cally integrated using a finite difference method. An 
equal spacing, i.e., ,At = 0.005 or 0.01 has been pro- 
vided in streamwise direction. However, a variable 
grid spacing has been used for 77 derivatives. The one 
adopted here is based on the geometric progression; 

Aq~= (~)'-',37h i=1 ,2 , .  ..... (55) 

In the above, A7}1 is the spacing between the second 
grid point and the wall. This particular approach has 
been found to be satisfactory by a number of investiga- 
tors [l 1]. The total thickness of the rj-strip is given by 

~X 
~ - I  

~ ~ ,  ( )x=~l (56) 

where m denotes the total number of grid points 
across the r~-strip. For given r~, x and ~ the spacing of 
the grid points is then well defined. For each particular 
problem the optimum values of At/l, x and ~ are se- 
lected. For the present problem, At; l = 0.004, x = 1.08 
and ffl = 81 were found to be practical. 

The numerical integration proceeded in an implicit 
manner in the direction of increasing (:. At each stage 
of (:, eqs. (40) and (41) were first solved for V and F fol- 
lowing Carnahan et a]. []2], and the results were fed to 
eq. (42) to obtain temperature profile. The computa- 
tion time for power-law boundary-layer code exceeded 
by 20-30% compared to that of Newtonian due to the 
nonlinearity in constitutive equation. 

Boundary-layer flow is driven by the outer flow, an 
important, flow characteristic such as turbulence level 
and blockage effect. The outer flow equation for a 2-D 
symmetric body should include a leading linear tern1 
to guarantee a stagnation point, and terms of odd order 
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Fig. 2. Boundary-layer velocity distributions of power- 
law materials  at 0= 20 degrees .  

only to ensure the symmetry of the flow. 'Fhough clas- 
sical, a most reliable outer flow equation is Hiemenz 
outer flow distribution. This is a polynominal fitted to 
the experimental data [2] given by the formula 

U~*= 1.8t4 x * i 0.2.71 x .3 +0.047 x *~' {57) 

RESULTS A N D  DISCUSSION 

Present numerical solution for the boundary-layer 
flows of power-law fluid may be considered exact. 
There was no limitations on the generalized Prandtl 
number and flow behavior index. Therefore, any 
anomalous transport behavior of different power-law 
fluids are entirely due to the different characteristics of 
the non-Newtonian materials. There was no additional 
difficulty in running the power-law program over lhe 

Newtonian case. 
The boundary-layer velocity profiles at 0 -  20 ~ and 

60 ~ are shown in Figs. 2 and 3. The viscous velocity of 
pseudoplastic materials is larger near the wall and 
smaller near the freestream compared to Newtonian 
fluid. It is also clear that as the fluid is more shear thin- 
ning (smaller n) the above tendency is exaggerated. 
Exactly the opposite is true for the dilatant material, 
i.e., the velocity profile for dilatant material is smaller 
near the wall and larger near the edge compared to 
Newtonian fluid. The same tendency was also report- 
ed for flows over flat plate [1]. This anomaly may 
easily be understood when the shear rate distribution 
across the boundary-layer is considered. In boundar3'- 
layer flow, shear rate is maximum near the wall and 
minimum near the edge where it tends to ;,ero. There- 
fore. as the material becomes more shear thinning, a 
smaller viscosity and larger velocity is dictated near the 
wall, and a larger viscosity and smaller velocity is ob- 

Fig. 3. Boundary-layer velocity distributions of power- 
law materials  at 0= 60 degrees .  

Fig, 4. Skin friction of power-law materials pr~dicted 
with Himenz' outer f low equation. 

tained near the edge. Exactly the opposite can be ap- 
plied for dilatant materials. 

The skin friction around a circular cylinder in 
crossflow is maxinmm at about 0 = 50-60 ~ depending 
on flow conditions, and tends to vanish as the point of 
separation nears for Newtonian fluid [13,14]. The 
point of separation is actually oscillating due to the 
natural shedding. Following Dwyer and McCroskey ~, 
the time-averaged point of separation from surzface oil 
fl.ow experiment is 78 :e l ~ for laminar flows. In numer- 
ical calculation, the predicted point of separation is 
very sensitive to the outer flow equation. The point of 
separation calculated from the present boundary-layer 
code using Hiemenz outer flow equation was approx- 
intately 79.5 ~ 

Presently calculated skin friction for power-law 
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Fig. 5, Boundary-layer temperature distributions of 
power-law materials at ~= 20 degrees.  

fluids is given in Fig. 4. Up to approximately 6 30 ~ 
from ihe front stagnation point, the skin friction in- 
creases as ~he value of n deoeases. Beyond this, the 
tendency is reversed, and a second cross is noticed at 
around 6 - 65 ~ As far as the boundary-layer flow is 
established, wall properties should follow Newtonian 
in nature. For Newtonian, skin friction i.e., wall shear 
rate increases up to about 0 = 50-60 ~ as mentioned 
above and as shown in the figure. Therefore up to ap- 
proximately this point, the power-law viscosity de- 
creases for n < l ,  and increases for n > l ,  and the ten- 
dency in Fig. 4 is expected. 

Temperature distribution and therefore heat trans- 
fer is not directly related to the non-Newtonian viscos- 
ity, but uniquely determined by the velocity distri- 
bution as far as the fluid is purely viscous and under 
forced convection. The connection between tempera- 
ture distribution and non-Newtonian viscosity comes 
into play only through the velocity field. 

With P~.p= 14, boundary-layer temperature distri- 
butio~Ls at 0= 20 ~ and 60 ~ are shown in Figs. 5 and 6, 
respectively. The growth of thermal boundary-layer 
along downstream, and its much thinner thickness 
compared to that of velocity boundary-layer are ob- 
vious. More importantly, temperature profile becomes 
larger as the value of n decreases and this is not revers- 
ed, unlike the velocity profile, as one moves away 
from the surface. This however may be easily under- 
stood by taking a further look at the corresponding 
velocily profiles (Figs. 2 and 3). Near the wall, the vis- 
cous velocity becomes larger as the value of n decrea- 
ses, and the thermal boundary-layer is mostly con- 
fined to this region of velocity field. With a larger 
velocity profile, a larger temperature profile results 
under fored convection. 

Fig. 6, Boundary-layer temperature distributions of 
power-law materials at ~ = 60 degrees.  

Fig. 7. Local rate of heat transfer for pseudoplastic  
materials.  

Shown in Fig. 7 is the presently calculated heat 
transfer for n = 0.8 and Pr, p= 10. Also shown in the 
same figure are analytical approximation by other in- 
vestigators. The predicted heat transfer shows a 
considerable devialion between them. Aside from the 
present numerical solution for n -  0.8, pedictions by 
two others show a contradiction even in tendency. 
Present result using the outer flow equation by Shah et 
a[. is similar to that of Shahet a[. [3], however wilh a 
lower value of predicted heat transfer for the present 
case. This perhaps is from the lower value of P,,  = 10 

Korean J. Ch. E. (Vol. 6, No. 3) 



232 B.K. KIM and H.S. LEE 

Fig. 8. Heat transfer of power.law materials predicted 
with Hlemenz' outer flow equation. C 

Cp 
employed presently, compared to co by Shah et al.. D 
With a very large value of P,:,~,, the thermal boundary- k 
layer is very thin, the velocity profile covering the L 
thermal boundary-layer is presumably linear. Follow- n 
ing Shah et al., their prediction was in good agreement P 
with the experimental data. T 

Two crossover points between n = 0.8 and n = 1.0 u 
are also noted from Fig. 7. This probably is due to the v 
skin friction distribution given in Fig. 4. The skin [tic- x 
tion, i.e., the wall shear rate is maximum at about 8 = y : 
50-60 ~ and becomes zero at the front stagnation point 
and at the point of separation as well. For n < 1, higher 
rate of shear gives a lower viscosity and larger velocity 
and temperature leading to a increased heat transfer. 
At zero or low rate of shear, i.e., near the two character- 
istic points, the viscosity for n=0.8 would be larger 
than that of Newtonian and this gives smaller velocity 
and temperature leading to a decreased heat transfer 
for pseudoplastic materials. Therefore two crossover 
points in Fig. 7 are expected. 

Presently calculated heat transfer for a wide range 
of flow behavior index with Pr.p = 14 is given in Fig. 8. 
For the major portion of the attached flow, the rate of 
heat transfer increases as lhe value of n decreases. Nu : 
Heat transfer of pseudoplastic is higher than that of 
Newtonian which, on the other hand, is higher com- 
pared to that of dilatant. However, as one nears front Pr : 
stagnation point or point of separation, the tendency is P,,p : 
reversed. Identically the same tendency was true for 
skin friction. This is not unexpected at all. Under forced R~ : 
convection heat transfer is essentially governed by Rcp : 
velocity field, and this viscous velocity is again deter- Sr : 
mined from the shear dependent viscosity for power- S~p : 
law materials. With a larger streamwise velocity near 
the wall for a more shear-thinning material, a higher 

velocity and temperature gradients are dictated result- 
ing in a larger skin friction and heat transfer at wall. 

CONCLUSION 

Boundary-layer analysis of momentum, heat and 
mass transfer for power-law non-Newtonian fluids has 
been performed using a finite difference technique. 
Results obtained indicated that the heat transfer across 
the boundary-layer as well as the skin friction distribu- 
tion is entirely governed by the flow behavior index(n) 
of power-law fluids via the boundary-layer velocity dis- 
tribution. 

NOMENCLATUE 

concentration, kg mol/m 3 
specific heat at constant pressure, J/kg~ 
binary diffusivity, m2/sec 
consistency index, kgn2/m 
radius of cylinder, m 
flow behavior index 
pressure, N/m 2 
temperature, ~ 
streamwise velocity, m/s  
normal velocity, m/s  
streamwise coordinate, m 
normal coordinate, m 

Subscripts 

e : condition at boundary-layer edge 
o : condition in freestream 
w : condition on the wall 

Superscript  

* : dimensionless variables in eqs. 15-22 

Dimens ion les s  Groups 

local Nusselt number = hL/k (h = heat trans- 
fer coefficient, L = diameter of cylinder, k = 
thermal conductivity) 
Prandtl number = Cp~/k 
generalized Prandtl number defined by eq. 
(28) 
Reynolds number = DUo/v 
generalized Reynolds number 
Schmidt number = ~/D 
generalized Schmidt number defined by eq. 
(29) 
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Greek Letters 

a : therl a] diffusivity 
: normal coordinate defined by eq. (37) 
: viscosity 
: kinematic viscosity 
: streamwise coordinate defined by eq. (36) 

p : density 
: shear stress, N/m 2 
: circumferential angle, deg 
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